ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестёрка. Сколько их?

Вниз   Решение


Каким может быть произведение нескольких различных простых чисел, если оно кратно каждому из них, уменьшенному на 1?
Найдите все возможные значения этого произведения.

ВверхВниз   Решение


Треугольник ABC правильный, P — произвольная точка. Докажите, что перпендикуляры, опущенные из центров вписанных окружностей треугольников PAB, PBC и PCA на прямые AB, BC и CA, пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



Задача 57174  (#07.044)

Тема:   [ Теорема Карно ]
Сложность: 5+
Классы: 9

На прямой l взяты точки A1, B1 и C1 и из вершин треугольника ABC на эту прямую опущены перпендикуляры AA2, BB2 и CC2. Докажите, что перпендикуляры, опущенные из точек A1, B1 и C1 на прямые BC, CA и AB, пересекаются в одной точке тогда и только тогда, когда  $ \overline{A_1B_1}$ : $ \overline{B_1C_1}$ = $ \overline{A_2B_2}$ : $ \overline{B_2C_2}$ (отношения отрезков ориентированные).
Прислать комментарий     Решение


Задача 57175  (#07.045)

Тема:   [ Теорема Карно ]
Сложность: 5+
Классы: 9

Треугольник ABC правильный, P — произвольная точка. Докажите, что перпендикуляры, опущенные из центров вписанных окружностей треугольников PAB, PBC и PCA на прямые AB, BC и CA, пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57176  (#07.046)

Тема:   [ Теорема Карно ]
Сложность: 5+
Классы: 9

Докажите, что если перпендикуляры, восставленные из оснований биссектрис треугольника, пересекаются в одной точке, то треугольник равнобедренный.
Прислать комментарий     Решение


Задача 57177  (#07.047)

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 57178  (#07.048)

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .