ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину? б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то
дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других. В остроугольном треугольнике ABC AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что б) Правильный (4k+2)-угольник вписан в окружность радиуса R с центром O. Пусть p – простое число. Докажите, что (a + b)p ≡ ap + bp (mod p) для любых целых a и b. Докажите, что если на плоскости даны какая-нибудь
окружность S и ее центр O, то с помощью одной линейки можно:
Докажите, что при нечётном n > 1 справедливо равенство
Решить в целых числах уравнение x² + y² = x + y + 2. В прямоугольном треугольнике ABC CH – высота, проведённая к гипотенузе. Окружность с центром H и радиусом CH пересекает больший катет AC в точке M. Точка B' симметрична точке B относительно H. В точке B' восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке K. Докажите, что: Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N. Дан треугольник ABC. С помощью двусторонней линейки, проведя не более восьми линий, постройте на стороне AB такую точку D, что Даны точки A и B, расстояние между которыми
больше 1 м. С помощью одной лишь линейки, длина которой равна 10 см,
постройте отрезок AB. (Линейкой можно только проводить прямые линии.)
|
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]
Даны точки A и B, расстояние между которыми
больше 1 м. С помощью одной лишь линейки, длина которой равна 10 см,
постройте отрезок AB. (Линейкой можно только проводить прямые линии.)
На окружности радиуса a дана точка. С помощью
монеты радиуса a постройте точку, диаметрально
противоположную данной.
Даны две параллельные прямые. С помощью одной
линейки разделите пополам отрезок, лежащий на одной из данных прямых.
Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки.
Даны две параллельные прямые. С помощью одной линейки разделите отрезок,
лежащий на одной из них, на n равных частей.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке