Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

Вниз   Решение


Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.

ВверхВниз   Решение


Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль).

ВверхВниз   Решение


а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 100]      



Задача 57444  (#10.034)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 6+
Классы: 8,9

Докажите, что  16Rr - 5r2 $ \leq$ p2 $ \leq$ 4R2 + 4Rr + 3r2.
Прислать комментарий     Решение


Задача 57445  (#10.035)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 6+
Классы: 8,9

Докажите, что  ra2 + rb2 + rc2 $ \geq$ 27R2/4.
Прислать комментарий     Решение


Задача 57446  (#10.036)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Симметричные неравенства для углов треугольника ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Синусы и косинусы углов треугольника ]
Сложность: 4+
Классы: 9,10

а)  1 < cos$ \alpha$ + cos$ \beta$ + cos$ \gamma$ $ \leq$ 3/2;
б)  1 < sin($ \alpha$/2) + sin($ \beta$/2) + sin($ \gamma$/2) $ \leq$ 3/2.
Прислать комментарий     Решение


Задача 57447  (#10.037)

Тема:   [ Симметричные неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

а)  sin$ \alpha$ + sin$ \beta$ + sin$ \gamma$ $ \leq$ 3$ \sqrt{3}$/2;
б)  cos($ \alpha$/2) + cos($ \beta$/2) + cos($ \gamma$/2) $ \leq$ 3$ \sqrt{3}$/2.
Прислать комментарий     Решение


Задача 57448  (#10.038)

Тема:   [ Симметричные неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .