Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Двадцать пять монет раскладывают по кучкам следующим образом. Сначала их произвольно разбивают на две группы. Затем любую из имеющихся групп снова разбивают на две группы, и так далее до тех пор, пока каждая группа не будет состоять из одной монеты. При каждом разбиении какой-либо группы на две записывается произведение количеств монет в двух получившихся группах. Чему может быть равна сумма всех записанных чисел?

Вниз   Решение


В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$. Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре. Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.

ВверхВниз   Решение


Периметр треугольника ABC равен 2p. На сторонах AB и AC взяты точки M и N так, что MN| BC и MN касается вписанной окружности треугольника ABC. Найдите наибольшее значение длины отрезка MN.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 57526  (#11.006)

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 4+
Классы: 9

Периметр треугольника ABC равен 2p. На сторонах AB и AC взяты точки M и N так, что MN| BC и MN касается вписанной окружности треугольника ABC. Найдите наибольшее значение длины отрезка MN.
Прислать комментарий     Решение


Задача 57527  (#11.007)

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 5
Классы: 9

В данный треугольник поместите центрально симметричный многоугольник наибольшей площади.
Прислать комментарий     Решение


Задача 57528  (#11.008)

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 5
Классы: 9

Площадь треугольника ABC равна 1. Пусть A1, B1, C1 — середины сторон BC, CA, AB соответственно. На отрезках AB1, CA1, BC1 взяты точки K, L, M соответственно. Чему равна минимальная площадь общей части треугольников KLM и A1B1C1?
Прислать комментарий     Решение


Задача 57529  (#11.009)

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5+
Классы: 8,9,10

Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?
Прислать комментарий     Решение


Задача 57530  (#11.010)

Темы:   [ Признаки подобия ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3+
Классы: 8,9

Докажите, что треугольники с длинами сторон a, b, c и a1, b1, c1 подобны тогда и только тогда, когда  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .