Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что при параллельном переносе окружность переходит в окружность.

Вниз   Решение


Точка X лежит внутри треугольника ABC, $ \alpha$ = SBXC, $ \beta$ = SCXA и  $ \gamma$ = SAXB. Пусть A1, B1 и C1 — проекции точек A, B и C на произвольную прямую l. Докажите, что длина вектора $ \alpha$$ \overrightarrow{AA_1}$ + $ \beta$$ \overrightarrow{BB_1}$ + $ \gamma$$ \overrightarrow{CC_1}$ равна ($ \alpha$ + $ \beta$ + $ \gamma$)d, где d — расстояние от точки X до прямой l.

ВверхВниз   Решение


Докажите, что кривая, изогонально сопряженная прямой, не проходящей через вершины треугольника, является коникой, проходящей через вершины треугольника.

ВверхВниз   Решение


Постройте окружность, касающуюся трех данных окружностей (задача Аполлония).

ВверхВниз   Решение


Докажите, что множество точек, равноудаленных от данной точки и данной окружности, представляет собой эллипс, гиперболу или луч.

ВверхВниз   Решение


Пусть a = (a1, a2) и  b = (b1, b2). Докажите, что a $ \vee$ b = a1b2 - a2b1.

ВверхВниз   Решение


Докажите, что множество всех центров окружностей, проходящих через данную точку и касающихся данной окружности (или прямой), не содержащей данную точку, представляет собой эллипс или гиперболу (или параболу).

ВверхВниз   Решение


На плоскости даны прямая l и точки A и B, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки A и B так, чтобы прямая l высекала на ней хорду наименьшей длины.

ВверхВниз   Решение


Даны прямая l и точки P и Q, лежащие по одну сторону от нее. На прямой l берем точку M и в треугольнике PQM проводим высоты PP' и QQ'. При каком положении точки M длина отрезка P'Q' минимальна?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 57558

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален.
Прислать комментарий     Решение


Задача 57562

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 9

Если на плоскости заданы пять точек, то, рассматривая всевозможные тройки этих точек, можно образовать 30 углов. Обозначим наименьший из этих углов $ \alpha$. Найдите наибольшее значение $ \alpha$.
Прислать комментарий     Решение


Задача 57559

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

На плоскости даны прямая l и точки A и B, лежащие по разные стороны от нее. Постройте окружность, проходящую через точки A и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
Прислать комментарий     Решение


Задача 57560

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

Даны прямая l и точки P и Q, лежащие по одну сторону от нее. На прямой l берем точку M и в треугольнике PQM проводим высоты PP' и QQ'. При каком положении точки M длина отрезка P'Q' минимальна?
Прислать комментарий     Решение


Задача 57561

Тема:   [ Экстремальные свойства (прочее) ]
Сложность: 4
Классы: 9

Точки A, B и O не лежат на одной прямой. Проведите через точку O прямую l так, чтобы сумма расстояний от нее до точек A и B была: а) наибольшей; б) наименьшей.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .