Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15$ \sqrt{2+\sqrt{3}}$)/(5$ \sqrt{3}$).

Вниз   Решение


Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

ВверхВниз   Решение


Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

ВверхВниз   Решение


Автор: Шатунов Л.

Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.

ВверхВниз   Решение


У пирата есть пять мешочков с монетами, по 30 монет в каждом. Он знает, что в одном лежат золотые монеты, в другом – серебряные, в третьем – бронзовые, а в каждом из двух оставшихся поровну золотых, серебряных и бронзовых. Можно одновременно достать любое число монет из любых мешочков и посмотреть, что это за монеты (вынимаются монеты один раз). Какое наименьшее число монет нужно достать, чтобы наверняка узнать содержимое хотя бы одного мешочка?

ВверхВниз   Решение


Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

ВверхВниз   Решение


Пусть E и F — середины сторон AB и CD четырехугольника ABCD, K, L, M и N — середины отрезков AF, CE, BF и DE. Докажите, что KLMN — параллелограмм.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 57686  (#13.006)

Темы:   [ Векторы сторон многоугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9,10

Пусть E и F — середины сторон AB и CD четырехугольника ABCD, K, L, M и N — середины отрезков AF, CE, BF и DE. Докажите, что KLMN — параллелограмм.
Прислать комментарий     Решение


Задача 57687  (#13.007)

Темы:   [ Векторы сторон многоугольников ]
[ Выпуклые многоугольники ]
Сложность: 5
Классы: 8,9,10

Дано n попарно не сонаправленных векторов (n$ \ge$3), сумма которых равна нулю. Докажите, что существует выпуклый n-угольник, набор векторов сторон которого совпадает с данным набором векторов.
Прислать комментарий     Решение


Задача 57688  (#13.008)

Тема:   [ Векторы сторон многоугольников ]
Сложность: 5
Классы: 9

Даны четыре попарно непараллельных вектора, сумма которых равна нулю. Докажите, что из них можно составить: а) невыпуклый четырехугольник; б) самопересекающуюся четырехзвенную ломаную.
Прислать комментарий     Решение


Задача 57689  (#13.009)

Тема:   [ Векторы сторон многоугольников ]
Сложность: 6
Классы: 9

Даны четыре попарно непараллельных вектора  a, b, c и  d, сумма которых равна нулю. Докажите, что

|a| + |b| + |c| + |d| > |a + b| + |a + c| + |a + d|.


Прислать комментарий     Решение

Задача 57690  (#13.010)

Тема:   [ Векторы сторон многоугольников ]
Сложность: 6
Классы: 9

В выпуклом пятиугольнике ABCDE сторона BC параллельна диагонали AD, CD || BE, DE || AC и  AE || BD. Докажите, что AB || CE.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .