|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вычислить с шестьюдесятью десятичными знаками Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1 и B1, причем k из них лежат на сторонах треугольника и 3 - k — на продолжениях сторон. Пусть
R =
Докажите, что: а) точки A1, B1 и C1 лежат на одной прямой тогда и только тогда, когда R = 1 и k четно (Менелай); б) прямые AA1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда R = 1 и k нечетно (Чева). Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL. Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины. |
Страница: 1 2 3 >> [Всего задач: 15]
Страница: 1 2 3 >> [Всего задач: 15] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|