Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Через вершину A правильного треугольника ABC под углом α ( 0<α< ) к AC проведена прямая, пересекающая BC в точке D . Найдите отношение площади треугольника ADC к площади треугольника ABC .

Вниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Их общая касательная касается первой окружности в точке B, а второй в точке C. Прямая, проходящая через точки A и B, пересекает вторую окружность в точке D. Известно, что BC = 10 см, AB = 8 см. Найдите площадь треугольника BCD.

ВверхВниз   Решение


В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.

ВверхВниз   Решение


Внутри выпуклого четырехугольника ABCD площади S взята точка O, причем  AO2 + BO2 + CO2 + DO2 = 2S. Докажите, что тогда ABCD — квадрат и O — его центр.

ВверхВниз   Решение


В треугольнике ABC угол A равен α,  AB = AC = b.  Через вершину B и центр описанной окружности проведена прямая до пересечения с прямой AC в точке D. Найдите BD.

ВверхВниз   Решение


В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK.  Найдите отношение  PQ : BK.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 57750  (#14.004)

Тема:   [ Теорема о группировке масс ]
Сложность: 2
Классы: 9

Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.
Прислать комментарий     Решение


Задача 57751  (#14.005)

Темы:   [ Теорема о группировке масс ]
[ Выпуклые многоугольники ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10

Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.
Прислать комментарий     Решение


Задача 57752  (#14.006)

Тема:   [ Теорема о группировке масс ]
Сложность: 3+
Классы: 9

Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
Прислать комментарий     Решение


Задача 57753  (#14.007)

Тема:   [ Теорема о группировке масс ]
Сложность: 4
Классы: 9

Докажите теорему Чевы (задача 4.48, б)) с помощью группировки масс.
Прислать комментарий     Решение


Задача 57754  (#14.008)

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD взяты точки K, L, M и N соответственно, причем AK : KB = DM : MC = $ \alpha$ и  BL : LC = AN : ND = $ \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что NP : PL = $ \alpha$ и  KP : PM = $ \beta$.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .