ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.

Вниз   Решение


Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

ВверхВниз   Решение


Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

ВверхВниз   Решение


Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

ВверхВниз   Решение


На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

ВверхВниз   Решение


Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис.


Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 58180  (#23.020)

Тема:   [ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

В каждой клетке доски 5×5 клеток сидит жук. В некоторый момент все жуки переползают на соседние (по горизонтали или вертикали) клетки. Обязательно ли при этом останется пустая клетка?
Прислать комментарий     Решение


Задача 58181  (#23.021)

Тема:   [ Шахматная раскраска ]
Сложность: 4
Классы: 8,9

а) Можно ли замостить костями домино размером 1×2 шахматную доску размером 8×8, из которой вырезаны два противоположных угловых поля?
б) Докажите, что если из шахматной доски размером 8×8 вырезаны две произвольные клетки разного цвета, то оставшуюся часть доски всегда можно замостить костями домино размером 1×2.
Прислать комментарий     Решение


Задача 58182  (#23.022)

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8,9

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

Прислать комментарий     Решение

Задача 58183  (#23.023)

Тема:   [ Шахматная раскраска ]
Сложность: 4
Классы: 8,9

Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис.


Прислать комментарий     Решение

Задача 79240  (#23.024)

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .