Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Диагонали четырехугольника ABCD пересекаются в точке P. Расстояния от точек A, B и P до прямой CD равны a, b и p. Докажите, что площадь четырехугольника ABCD равна  ab . CD/2p.

Вниз   Решение



Существует ли такое число n , что числа
  а)  n – 96,  n,  n + 96;
  б)  n – 1996,  n,  n + 1996
простые? (Все простые числа считаем положительными.)

ВверхВниз   Решение


Точки K, L, M и N лежат на сторонах AB, BC, CD и DA параллелограмма ABCD, причем отрезки KM и LN параллельны сторонам параллелограмма. Эти отрезки пересекаются в точке O. Докажите, что площади параллелограммов KBLO и MDNO равны тогда и только тогда, когда точка O лежит на диагонали AC.

ВверхВниз   Решение


Внутри сектора AOB круга радиуса R = AO = BO лежит отрезок MN. Докажите, что MN $ \leq$ R или MN $ \leq$ AB. (Предполагается, что  $ \angle$AOB < 180o.)

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC внешним образом построены параллелограммы; P — точка пересечения продолжений их сторон, параллельных AB и BC. На стороне AC построен параллелограмм, вторая сторона которого равна и параллельна BP. Докажите, что его площадь равна сумме площадей первых двух параллелограммов.

ВверхВниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  cos 2$ \alpha$ + cos 2$ \beta$ + cos 2$ \gamma$ + 4 cos$ \alpha$cos$ \beta$cos$ \gamma$ + 1 = 0;
б)  cos2$ \alpha$ + cos2$ \beta$ + cos2$ \gamma$ + 2 cos$ \alpha$cos$ \beta$cos$ \gamma$ = 1.
в) cos 2$ \alpha$ + cos 2$ \beta$ + cos 2$ \gamma$ = $ {\frac{OH^2}{2R^2}}$ - $ {\frac{3}{2}}$, где O — центр описанной окружности, H — точка пересечения высот.

ВверхВниз   Решение


Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?

ВверхВниз   Решение


Даны треугольник ABC со сторонами a > b > c и произвольная точка O внутри его. Пусть прямые  AO, BO, CO пересекают стороны треугольника в точках P, Q, R. Докажите, что  OP + OQ + OR < a.

ВверхВниз   Решение


На плоскости даны три (одинаково ориентированных) квадрата: ABCD, AB1C1D1 и  A2B2CD2; первый квадрат имеет с двумя другими общие вершины A и C. Докажите, что медиана BM треугольника BB1B2 перпендикулярна отрезку D1D2.

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
sin 2$ \alpha$ + sin 2$ \beta$ + sin 2$ \gamma$ = 4 sin$ \alpha$sin$ \beta$sin$ \gamma$.

ВверхВниз   Решение


Внутри окружности расположен выпуклый пятиугольник. Докажите, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.

ВверхВниз   Решение


Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

ВверхВниз   Решение


а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.

ВверхВниз   Решение


На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной стороне квадрата.
Найдите величину угла MAK.

ВверхВниз   Решение


Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис.


Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 58180  (#23.020)

Тема:   [ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

В каждой клетке доски 5×5 клеток сидит жук. В некоторый момент все жуки переползают на соседние (по горизонтали или вертикали) клетки. Обязательно ли при этом останется пустая клетка?
Прислать комментарий     Решение


Задача 58181  (#23.021)

Тема:   [ Шахматная раскраска ]
Сложность: 4
Классы: 8,9

а) Можно ли замостить костями домино размером 1×2 шахматную доску размером 8×8, из которой вырезаны два противоположных угловых поля?
б) Докажите, что если из шахматной доски размером 8×8 вырезаны две произвольные клетки разного цвета, то оставшуюся часть доски всегда можно замостить костями домино размером 1×2.
Прислать комментарий     Решение


Задача 58182  (#23.022)

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8,9

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

Прислать комментарий     Решение

Задача 58183  (#23.023)

Тема:   [ Шахматная раскраска ]
Сложность: 4
Классы: 8,9

Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис.


Прислать комментарий     Решение

Задача 79240  (#23.024)

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .