ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклая фигура $ \Phi$ имеет площадь S и полупериметр p. Докажите, что если S > np для некоторого натурального n, то $ \Phi$ содержит по крайней мере n целочисленных точек.

   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 18]      



Задача 58217  (#24.010B-)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Внутри выпуклой фигуры с площадью S и полупериметром p нет точек целочисленной решётки. Докажите, что S$ \le$p.
Прислать комментарий     Решение


Задача 58218  (#24.010B-1)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Выпуклая фигура $ \Phi$ имеет площадь S и полупериметр p. Докажите, что если S > np для некоторого натурального n, то $ \Phi$ содержит по крайней мере n целочисленных точек.
Прислать комментарий     Решение


Задача 58219  (#24.010)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Внутри выпуклой фигуры с площадью S и полупериметром p лежит n узлов решетки. Докажите, что n > S - p.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .