ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На стороне AB четырехугольника ABCD взяты точки A1
и B1, а на стороне CD — точки C1 и D1,
причем
AA1 = BB1 = pAB и
CC1 = DD1 = pCD, где p < 0, 5. Докажите,
что
SA1B1C1D1/SABCD = 1 - 2p.
а) Докажите, что отношение расстояний от точки эллипса
до фокуса и до одной из директрис равно эксцентриситету e.
Квадрат разделен на четыре части двумя
перпендикулярными прямыми, точка пересечения которых лежит
внутри его. Докажите, что если площади трех из этих частей
равны, то равны и площади всех четырех частей.
Шестиугольник ABCDEF вписан в окружность.
Диагонали AD, BE и CF являются диаметрами этой окружности.
Докажите, что площадь шестиугольника ABCDEF равна
удвоенной площади треугольника ACE.
Даны окружность и две точки A и B внутри ее.
Впишите в окружность прямоугольный треугольник так, чтобы его катеты
проходили через данные точки.
Никакие три из четырех точек A, B, C, D не
лежат на одной прямой. Докажите, что угол между описанными
окружностями треугольников ABC и ABD равен углу
между описанными окружностями треугольников ACD и BCD.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
В сегмент вписываются всевозможные пары пересекающихся окружностей,
и для каждой пары через точки их пересечения проводится прямая.
Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
Никакие три из четырех точек A, B, C, D не
лежат на одной прямой. Докажите, что угол между описанными
окружностями треугольников ABC и ABD равен углу
между описанными окружностями треугольников ACD и BCD.
Через точки A и B проведены окружности S1 и S2,
касающиеся окружности S, и окружность S3, перпендикулярная S.
Докажите, что S3 образует равные углы с окружностями S1 и S2.
Две окружности, пересекающиеся в точке A, касаются окружности (или
прямой) S1 в точках B1 и C1, а окружности (или прямой) S2
в точках B2 и C2 (причем касание в B2 и C2 такое же,
как в B1 и C1). Докажите, что окружности, описанные вокруг
треугольников AB1C1 и AB2C2, касаются друг друга.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке