ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K. В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°. В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников? В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что ломаная AOC делит ABCD на две
фигуры равной площади.
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до M включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел, например, если M равно 3, то полный набор содержит 10 костяшек: (0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3). Из костяшек можно выкладывать цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны. Некоторые костяшки были удалены из полного набора. Требуется определить, какое минимальное количество цепочек нужно выложить из оставшихся в наборе костяшек, чтобы каждая из них принадлежала ровно одной цепочке. Задание Напишите программу DOMINO, которая по информации о наборе домино должна ответить, какое минимальное количество цепочек нужно выложить. Входные данные В первой строке входного файла DOMINO.DAT содержится одно целое число M (0≤M?100), которое соответствует максимально возможному количеству точек на половинке костяшки. Во второй строке записано одно целое число N, равное количеству костяшек, удаленных из полного набора. Каждая i-я из последующих N строк содержит по два числа Ai и Bi. Это количества точек на половинках i-й удалённой костяшки. Выходные данные Единственная строка выходного файла DOMINO.SOL должна содержать одно целое число L - минимальное количество цепочек. Пример входных и выходных данных
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что площадь четырехугольника ABCD
равна
(AB . CD + BC . AD)/2.
Через каждую вершину треугольника проведены
две прямые, делящие противоположную сторону треугольника
на три равные части. Докажите, что диагонали, соединяющие
противоположные вершины шестиугольника, образованного
этими прямыми, пересекаются в одной точке.
|
Страница: 1 2 >> [Всего задач: 6]
Через каждую вершину треугольника проведены
две прямые, делящие противоположную сторону треугольника
на три равные части. Докажите, что диагонали, соединяющие
противоположные вершины шестиугольника, образованного
этими прямыми, пересекаются в одной точке.
На сторонах AB, BC и CD параллелограмма ABCD
взяты точки K, L и M соответственно, делящие эти стороны
в одинаковых отношениях. Пусть b, c, d — прямые,
проходящие через B, C, D параллельно прямым KL, KM, ML
соответственно. Докажите, что прямые b, c, d проходят
через одну точку.
Дан треугольник ABC. Пусть O — точка пересечения
его медиан, а M, N и P — точки сторон AB, BC и CA,
делящие эти стороны в одинаковых отношениях (т. е.
AM : MB = BN : NC = CP : PA = p : q). Докажите, что:
В трапеции ABCD с основаниями AD и BC через
точку B проведена прямая, параллельная стороне CD и пересекающая диагональ AC в точке P, а через точку C —
прямая, параллельная стороне AB и пересекающая диагональ
BD в точке Q. Докажите, что прямая PQ параллельна
основаниям трапеции.
В параллелограмме ABCD точки A1, B1, C1, D1 лежат соответственно на сторонах AB, BC, CD, DA. На сторонах A1B1, B1C1, C1D1, D1A1 четырехугольника A1B1C1D1 взяты соответственно точки A2, B2, C2, D2. Известно, что Докажите, что A2B2C2D2 — параллелограмм со сторонами, параллельными сторонам ABCD.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке