ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ. Обозначим вершины и точки звеньев (неправильной) пятиконечной звезды так, как показано на рис. Докажите, что
A1C . B1D . C1E . D1A . E1B = A1D . B1E . C1A . D1B . E1C.
На доске была начерчена трапеция ABCD (AD| BC)
и проведены перпендикуляр OK из точки O пересечения диагоналей на
основание AD и средняя линия EF. Затем трапецию стерли. Как
восстановить чертеж по сохранившимся отрезкам OK и EF?
Докажите, что любой прямоугольник можно разрезать на части и
сложить из них прямоугольник со стороной 1.
Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
Два подобных равнобедренных треугольника имеют общую
вершину. Докажите, что проекции их оснований на прямую, соединяющую
середины оснований, равны.
Докажите, что уравнение касательной к эллипсу
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84]
Докажите, что множество точек, сумма расстояний от
которых до двух заданных точек F1 и F2 —
постоянная величина, есть эллипс.
Докажите, что середины параллельных хорд эллипса лежат на одной прямой.
Докажите, что уравнение касательной к эллипсу
Докажите, что эллиптическое зеркало обладает тем
свойством, что пучок лучей света, исходящий из одного фокуса,
сходится в другом.
а) Докажите, что для любого параллелограмма
существует эллипс, касающийся сторон параллелограмма в их
серединах.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 84]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке