ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12. Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом.
Число x таково, что число
x + |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]
Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|.
Позиционная система
счисления.
Докажите, что
при
q
n = akqk + ak - 1qk - 1 +...+ a1q + a0,
где
0
Пусть a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T an+T = an (n ≥ 0). Докажите, что
Аксиома индукции. Если известно, что некоторое утверждение верно для 1,
и из предположения, что утверждение верно для некоторого n, вытекает его
справедливость для n+1, то это утверждение верно для всех натуральных чисел.
Число x таково, что число
x +
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1255]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке