ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"?
Каким линейным рекуррентным соотношениям
удовлетворяют последовательности
Окружность, касающаяся сторон AC и BC
треугольника ABC в точках M и N, касается также его описанной
окружности (внутренним образом). Докажите, что середина
отрезка MN совпадает с центром вписанной окружности
треугольника ABC.
Одна из диагоналей вписанного в окружность четырёхугольника является диаметром. Докажите, что при a, b, c имеет место неравенство Докажите, что Точка O – центр вписанной окружности треугольника ABC. На сторонах AC и BC выбраны точки M и K соответственно так, что BK·AB = BO² и Числовая функция f такова, что для любых x и y выполняется равенство f(x + y) = f(x) + f(y) + 80xy. Найдите f(1), если f(0,25) = 2. ABC - прямоугольный треугольник с прямым углом C. Докажите, что
ma2 + mb2 > 29r2.
Выпуклая фигура
Найдите формулу n-го члена для
последовательностей, заданных условиями (
n
В треугольнике ABC угол С в три раза больше угла A. На стороне AB взята такая точка D, что BD = BC. Найдите CD, если AD = 4.
Сумма углов n-угольника.
Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями.
Выведите отсюда, что сумма углов в произвольном n-угольнике
равна (n - 2) |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
На сколько частей делят пространство n плоскостей "общего положения"? И что это за "общее положение"?
Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.
Сумма углов n-угольника.
Докажите, что произвольный n-угольник (не обязательно выпуклый) можно разрезать на треугольники непересекающимися диагоналями.
Выведите отсюда, что сумма углов в произвольном n-угольнике
равна (n - 2)
Клетки шахматной доски
100×100
раскрашены в 4 цвета так, что в любом квадрате 2×2 все
клетки разного цвета. Докажите, что угловые клетки раскрашены в
разные цвета.
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке