Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R .

Вниз   Решение


Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.

ВверхВниз   Решение


За один ход разрешается или удваивать число, или стирать его последнюю цифру. Можно ли за несколько ходов получить из числа 458 число 14?

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Автор: Русских И.

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.

ВверхВниз   Решение


Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

ВверхВниз   Решение


Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

ВверхВниз   Решение


Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 173]      



Задача 60589  (#03.137)

Темы:   [ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Метод спуска ]
Сложность: 5-
Классы: 9,10,11

Решите в целых числах уравнения:   а)  x² – xy – y² = 1;   б)  x² – xy – y² = –1.

Прислать комментарий     Решение

Задача 60590  (#03.138)

Темы:   [ Алгоритм Евклида ]
[ Десятичная система счисления ]
[ Числа Фибоначчи ]
Сложность: 3+
Классы: 9,10,11

а) Докажите, что в последовательности чисел Фибоначчи при  m ≥ 2  встречается не менее четырёх и не более пяти m-значных чисел.
б) Докажите, что число F5n+2  (n ≥ 0)  содержит в своей десятичной записи не менее  n + 1  цифры.

Прислать комментарий     Решение

Задача 60591  (#03.139)

Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k шагов.
Докажите, что начальные числа m0 и m1 должны удовлетворять неравенствам  m1Fk+1m0Fk+2.

Прислать комментарий     Решение

Задача 60592  (#03.140)

 [Теорема Ламе]
Темы:   [ Алгоритм Евклида ]
[ Числа Фибоначчи ]
Сложность: 4-
Классы: 9,10,11

Пусть число m1 в десятичной системе счисления записывается при помощи n цифр.
Докажите, что при любом m0 число шагов k в алгоритме Евклида для чисел m0 и m1 удовлетворяет неравенству  k ≤ 5n.

Прислать комментарий     Решение

Задача 60593  (#03.141)

 [Фибоначчиевы коэффициенты]
Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .