Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите следующие свойства подходящих дробей:
  а)  PkQk–2Pk–2Qk = (–1)kak  (k ≥ 2);
  б)   =   (k ≥ 1);
  в)  Q1 < Q2 < ... < Qn;
  г)   < < < ... ≤ ≤ ... < < < ;

  д)   <   (k, l ≥ 0).

Вниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Для натуральных чисел  a > b > 1  определим последовательность  x1, x2, ...  формулой   .   Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.

ВверхВниз   Решение


Из точки M на плоскость α опущен перпендикуляр MH длины 3 и проведены две наклонные, составляющие с перпендикуляром углы по 30o . Угол между наклонными равен 60o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BCM = .

ВверхВниз   Решение


В треугольнике даны два угла α и β и радиус R описанной окружности. Найдите высоту, опущенную из вершины третьего угла треугольника.

ВверхВниз   Решение


Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что  L1P = L2Q.

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Вычислите следующие цепные дроби:
  а)  [5; (1, 2, 1, 10}];   б)  [5; (1, 4, 1, 10}];   в)  [2; (1, 1, 3}].

ВверхВниз   Решение


Дан треугольник ABC. Пусть I – центр его вписанной окружности, и пусть X, Y, Z – центры вписанных окружностей треугольников AIB, BIC и AIC соответственно. Оказалось, что центр вписанной окружности треугольника XYZ совпадает с I. Обязательно ли тогда треугольник ABC равносторонний?

ВверхВниз   Решение


Последовательности {ak} и {bk} строятся по следующему закону: a1 = 1,   an+1 = min(an, bn),  bn+1 = |bn – an|  (n ≥ 1).
  а) Докажите, что  an ≠ 0  и  an  стремится к 0 при  n → ∞.
  б) Докажите, что последовательность    имеет предел и найдите этот предел.

ВверхВниз   Решение


В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

ВверхВниз   Решение


ABCD – данный параллелограмм. Через точку пересечения его диагоналей проведена перпендикулярная к BC прямая, которая пересекает BC в точке E, а продолжение AB – в точке F. Найдите BE, если  AB = a,  BC = b  и  BF = c.

ВверхВниз   Решение


Разложите в цепные дроби числа 147/13 и 129/111.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



Задача 60594  (#03.142)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 9,10,11

Пусть a1, a2, ... – такая последовательность ненулевых чисел, что  (am, an) = a(m, n)  (m, n ≥ 1).

Докажите, что все обобщенные биномиальные коэффициенты     являются целыми числами.

Прислать комментарий     Решение

Задача 60595  (#03.143)

Тема:   [ Цепные (непрерывные) дроби ]
Сложность: 2+
Классы: 8,9,10,11

Разложите в цепные дроби числа 147/13 и 129/111.

Прислать комментарий     Решение

Задача 60596  (#03.144)

Темы:   [ Цепные (непрерывные) дроби ]
[ Числа Фибоначчи ]
Сложность: 3
Классы: 8,9,10,11

Пусть     Чему равны Pn и Qn?

Прислать комментарий     Решение

Задача 60597  (#03.145)

Темы:   [ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 3
Классы: 8,9,10,11

Как связано разложение рационального числа в цепную дробь с алгоритмом Евклида?

Прислать комментарий     Решение

Задача 60598  (#03.146)

 [Геометрическая интерпретация алгоритма Евклида]
Темы:   [ Цепные (непрерывные) дроби ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 8,9,10,11

Работу алгоритма Евклида (см. задачу 60488) можно представить следующим образом. В прямоугольник размерами  m0×m1  (m1m0)  укладываем a0 квадратов размера   m1×m1,  в оставшийся прямоугольник размерами  m1×m2  (m2m1)  укладываем a1 квадратов размера  m2×m2,  и т. д. до тех пор, пока весь прямоугольник не покроется квадратами. Выразите общее число квадратов через элементы цепной дроби числа  m0/m1.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .