ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов? Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение. При каком положительном значении p уравнения 3x² – 4px + 9 = 0 и x² – 2px + 5 = 0 имеют общий корень? На плоскости даны две неконцентрические
окружности S1 и S2. Докажите, что геометрическим местом точек,
для которых степень относительно S1 равна степени
относительно S2, является прямая.
На плоскости даны три окружности, центры которых
не лежат на одной прямой. Проведем радикальные оси для
каждой пары этих окружностей. Докажите, что все три
радикальные оси пересекаются в одной точке.
Разложите P(x + 3) по степеням x, где P(x) = x4 – x3 + 1. |
Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]
Значение многочлена Pn(x) = anxn + an–1xn–1 + ... + a1x + a0 (an ≠ 0) в точке x = c можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде Pn(x) = (...(anx + an–1)x + ... + a1)x + a0. Пусть bn, bn–1, ..., b0 – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть bn = an, bk = cbk+1 + ak (k = n – 1, ..., 0). Докажите, что при делении многочлена Pn(x) на x – c с остатком, у многочлена в частном коэффициенты будут совпадать с числами bn–1, ..., b1, а остатком будет число b0. Таким образом, будет справедливо равенство:
Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n).
Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням x – c: P(x) =
причем коэффициенты ck могут быть найдены по формуле ck =
Пользуясь схемой Горнера, разложите x4 + 2x3 – 3x2 – 4x + 1 по степеням x + 1.
Разложите P(x + 3) по степеням x, где P(x) = x4 – x3 + 1.
Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке