ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$. Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)². На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем отрезки AA1, BB1 и CC1
пересекаются в точке P. Пусть
la, lb, lc — прямые,
соединяющие середины отрезков BC и B1C1, CA и C1A1,
AB и A1B1. Докажите, что прямые la, lb и lc
пересекаются в одной точке, причем эта точка лежит на отрезке PM,
где M — центр масс треугольника ABC.
Сумма трёх положительных углов равна 90o. Может ли сумма косинусов двух из них быть равна косинусу третьего? В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой? Докажите, что если корни многочлена f(x) = x³ + ax² + bx + c образуют правильный треугольник на комплексной плоскости, то многочлен |
Страница: << 1 2 3 4 5 6 [Всего задач: 29]
Докажите, что если корни многочлена f(x) = x³ + ax² + bx + c образуют правильный треугольник на комплексной плоскости, то многочлен
Докажите, что если уравнения x³ + px + q = 0, x³ + p'x + q' = 0 имеют общий корень, то (pq' – qp')(p – p')² = (q – q')³.
а) Докажите, что при 4p³ + 27q² < 0 уравнение x³ + px + q = 0 заменой x = αy + β сводится к уравнению ay³ – 3by² – 3ay + b = 0 (*) б) Докажите, что решениями уравнения (*) будут числа y1 = tg
Этот метод позволяет решать произвольное уравнение 4-й степени путем сведения его к решению вспомогательного кубического уравнения и двух квадратных
уравнений.
Страница: << 1 2 3 4 5 6 [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке