ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В параллелограмме ABCD диагональ AC больше
диагонали BD; M — такая точка диагонали AC, что
четырехугольник BCDM вписанный. Докажите, что прямая BD
является общей касательной к описанным окружностям
треугольников ABM и ADM.
Докажите неравенство для положительных значений переменных: a²(1 + b4) + b²(1 + a4) ≤ (1 + a4)(1 + b4). Через каждую вершину треугольника проведены
две прямые, делящие противоположную сторону треугольника
на три равные части. Докажите, что диагонали, соединяющие
противоположные вершины шестиугольника, образованного
этими прямыми, пересекаются в одной точке.
Докажите неравенство для положительных значений переменных: a³b + b³c + c³a ≥ abc(a + b + c). На продолжении хорды KL окружности с центром O
взята точка A, и из нее проведены касательные AP и AQ; M — середина отрезка PQ. Докажите, что
Докажите неравенство 3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3) при a1 ≥ a2 ≥ a3, b1 ≥ b2 ≥ b3. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 76]
Докажите неравенство для положительных значений переменных:
Докажите для положительных значений переменных неравенство
Докажите неравенство 3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3) при a1 ≥ a2 ≥ a3, b1 ≥ b2 ≥ b3.
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
Докажите неравенство Чебышёва
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 76]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке