Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Калинин А.

Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.

ВверхВниз   Решение


Про приведённый многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2  многочлен    имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?

ВверхВниз   Решение


Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

ВверхВниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?

ВверхВниз   Решение


Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть   а) 34;   б) 35;   в) 56 игр?

ВверхВниз   Решение


Автор: Ивлев Ф.

Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 64468

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 9,10

Автор: Ивлев Ф.

Пусть A1 и C1 – точки касания вписанной окружности со сторонами BC и AB соответственно, а A' и C' – точки касания вневписанной окружности треугольника, вписанной в угол B, с продолжениями сторон BC и AB соответственно. Докажите, что ортоцентр H треугольника ABC лежит на A1C1 тогда и только тогда, когда прямые A'C1 и BA перпендикулярны.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .