Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Даны два треугольника: ABC и A1B1C1. Известно, что  AB = A1B1AC = A1C1,  ∠A = ∠A1.  На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что  AK = A1K1LC = L1C1.  Докажите, что  KL = K1L1  и  AL = A1L1.

Вниз   Решение


Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна?

ВверхВниз   Решение


Вершина M правильного треугольника ABM со стороной a расположена на стороне CD прямоугольника ABCD.
Найдите диагональ прямоугольника ABCD.

ВверхВниз   Решение


В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

ВверхВниз   Решение


Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как  2 : 1,  считая от вершины. В каком отношении она делит боковые стороны?

ВверхВниз   Решение


Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a.

ВверхВниз   Решение


Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

ВверхВниз   Решение


Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.

ВверхВниз   Решение


Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой.

ВверхВниз   Решение


В окружность вписан прямоугольник ABCD , сторона AB которого равна a . Из конца K диаметра KP , параллельного стороне AB , сторона BC видна под углом β . Найдите радиус окружности.

ВверхВниз   Решение


В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2.
Найдите расстояние от вершины острого угла до точки, в которой вписанная окружность касается противолежащего этому углу катета.

ВверхВниз   Решение


Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.

ВверхВниз   Решение


В равнобедренном треугольнике MPK с основанием PM  ∠P = arctg 5/12.  Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и  AP = 6/5.  Найдите площадь треугольника HAE.

ВверхВниз   Решение


Найдите периметр четырехугольника ABCD, в котором AB = CD = a, $ \angle$BAD = $ \angle$BCD = $ \alpha$ < 90o, BC $ \neq$ AD.

ВверхВниз   Решение


Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.)

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 393]      



Задача 64572

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 5,6,7,8

Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.)

Прислать комментарий     Решение

Задача 64575

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 7,8

Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.

Прислать комментарий     Решение

Задача 65100

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 5,6,7

Через двор проходят четыре пересекающиеся тропинки (см. план).

Посадите четыре яблони так, чтобы по обе стороны от каждой тропинки было поровну яблонь.

Прислать комментарий     Решение

Задача 65102

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

Прислать комментарий     Решение

Задача 65596

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3
Классы: 5,6,7

У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .