ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
года:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два треугольника: ABC и A1B1C1. Известно, что AB = A1B1, AC = A1C1, ∠A = ∠A1. На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что AK = A1K1, LC = L1C1. Докажите, что KL = K1L1 и AL = A1L1. Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна? Вершина M правильного треугольника ABM со стороной a
расположена на стороне CD прямоугольника ABCD. В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны? Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a. Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB. Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.
Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой. В окружность вписан прямоугольник ABCD , сторона AB которого равна a . Из конца K диаметра KP , параллельного стороне AB , сторона BC видна под углом β . Найдите радиус окружности. В равнобедренном прямоугольном треугольнике радиус вписанной окружности равен 2. Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001. В равнобедренном треугольнике MPK с основанием PM ∠P = arctg 5/12. Окружность, вписанная в угол K, касается стороны KP в точке A и отсекает от основания отрезок HE. Известно, что центр окружности удалён от вершины K на расстояние 13/24 и AP = 6/5. Найдите площадь треугольника HAE. Найдите периметр четырехугольника ABCD, в котором
AB = CD = a,
Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.) |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 393]
Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.)
Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.
Через двор проходят четыре пересекающиеся тропинки (см. план).
Математик с пятью детьми зашёл в пиццерию.
У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 393]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке