|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах BC, CA и AB треугольника ABC выбраны соответственно точки A1, B1 и C1, причём медианы A1A2, B1B2 и C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC и CA. В каком отношении точки A1, B1 и C1 делят стороны треугольника ABC? Можно ли расставить охрану вокруг точечного объекта так, чтобы ни
к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой
стоит неподвижно и видит на 100 м строго вперёд.) а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег? б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.) Найдите какие-нибудь пять натуральных чисел, разность каждых двух из которых равна наибольшему общему делителю этой пары чисел. Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)? Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена? |
Страница: 1 2 >> [Всего задач: 7]
Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?
Верно ли, что любой выпуклый многоугольник можно по прямой разрезать на два меньших многоугольника с равными периметрами и
Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по положительному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?
Дан многочлен двадцатой степени с целыми коэффициентами. На плоскости отметили все точки с целыми координатами, у которых ординаты не меньше 0 и не больше 10. Какое наибольшее число отмеченных точек может лежать на графике этого многочлена?
Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|