ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи 2n = 10a + b. Доказать, что если n > 3, то ab делится на 6. (n, a и b – целые числа, b < 10.) На координатной плоскости xOy построена парабола y = x². Затем начало координат и оси стёрли. Внутри выпуклой фигуры с площадью S и полупериметром p лежит n
узлов решетки. Докажите, что n > S - p.
Докажите неравенство На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. На стороне BC треугольника ABC взята точка D. Окружность S1 касается
отрезков BE и EA и описанной окружности, окружность S2 касается отрезков
CE и EA и описанной окружности. Пусть I, I1, I2 и r, r1, r2
-- центры и радиусы вписанной окружности и окружностей S1, S2;
Докажите, что при a, b, c > 0 имеет место неравенство Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать? Из утверждений "число a делится на 2", "число a делится на 4", "число a делится на 12" и "число a делится на 24" три верных, а одно неверное. Какое? а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников? Существует ли такое x, что |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 557]
В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если ∠KDE = 70°, ∠DKF = 140°.
Решите уравнение: x(x + 1) = 2014·2015.
Существует ли такое x, что
Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?
Числовая функция f такова, что для любых x и y выполняется равенство f(x + y) = f(x) + f(y) + 80xy. Найдите f(1), если f(0,25) = 2.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 557]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке