ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан треугольник ABC. Проведены высота AH и медиана CM. Обозначим точку их пересечения через P. Высота, проведённая из вершины B треугольника, пересекается с перпендикуляром, опущенным из точки H на прямую CM, в точке Q. Докажите, что прямые CQ и BP перпендикулярны. Решение |
Страница: 1 2 >> [Всего задач: 6]
По целому числу a построим последовательность a1 = a, a2 = 1 + a1, a3 = 1 + a1a2, a4 = 1 + a1a2a3, ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов an+1 – an – квадраты целых чисел.
В турнире по футболу участвует 2n команд (n > 1). В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели 2n – 1 тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.
Клетки бесконечного клетчатого листа бумаги раскрасили в чёрный и белый цвета в шахматном порядке. Пусть X – треугольник площади S с вершинами в узлах сетки. Покажите, что есть такой подобный X треугольник с вершинами в узлах сетки, что площадь его белой части равна площади чёрной части и равна S.
Император пригласил на праздник 2015 волшебников, некоторые из которых добрые, а остальные злые. Добрый волшебник всегда говорит правду, а злой может говорить что угодно. При этом волшебники знают, кто добрый и кто злой, а император нет. На празднике император задаёт каждому волшебнику (в каком хочет порядке) по вопросу, на которые можно ответить "да" или "нет". Опросив всех волшебников, император изгоняет одного. Изгнанный волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. Затем император вновь задает каждому из оставшихся волшебников по вопросу, вновь одного изгоняет, и так далее, пока император не решит остановиться (он может это сделать после любого вопроса). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.
Дан треугольник ABC. Проведены высота AH и медиана CM. Обозначим точку их пересечения через P. Высота, проведённая из вершины B треугольника, пересекается с перпендикуляром, опущенным из точки H на прямую CM, в точке Q. Докажите, что прямые CQ и BP перпендикулярны.
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|