ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть два равных фанерных треугольника, один из углов которых равен α (эти углы отмечены). Расположите их на плоскости так, чтобы какие-то три вершины образовали угол, равный α/2. (Никакими инструментами, даже карандашом, пользоваться нельзя.)

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 820]      



Задача 65037

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Конкуррентность высот. Углы между высотами. ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9,10

Вневписанная окружность прямоугольного треугольника ABC  (∠B = 90°)  касается стороны BC в точке A1, а прямой AC в точке A2. Прямая A1A2 пересекает (первый раз) вписанную окружность треугольника ABC в точке A'; аналогично определяется точка C'. Докажите, что  AC || A'C'.

Прислать комментарий     Решение

Задача 65038

Темы:   [ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10

Пусть AP и BQ – высоты данного остроугольного треугольника ABC. Постройте циркулем и линейкой на стороне AB точку M так, чтобы
AQM = ∠BPM.

Прислать комментарий     Решение

Задача 65040

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC высота и медиана, проведённые из вершины A, образуют (вместе с прямой BC) треугольник, в котором биссектриса угла A является медианой, а высота и медиана, проведённые из вершины B, образуют (вместе с прямой AC) треугольник, в котором биссектриса угла B является биссектрисой. Найдите отношение сторон треугольника ABC.

Прислать комментарий     Решение

Задача 65360

Темы:   [ Трапеции (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Пусть ABCD – трапеция, в которой углы A и B прямые,  AB = AD,  CD = BC + AD,  BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.

Прислать комментарий     Решение

Задача 65364

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Есть два равных фанерных треугольника, один из углов которых равен α (эти углы отмечены). Расположите их на плоскости так, чтобы какие-то три вершины образовали угол, равный α/2. (Никакими инструментами, даже карандашом, пользоваться нельзя.)

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 820]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .