Страница: 1
2 >> [Всего задач: 6]
Задача
65641
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?
Задача
65642
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
В прямоугольнике проведена ломаная, соседние звенья которой перпендикулярны и равны меньшей стороне прямоугольника (см. рис).
Найдите отношение сторон прямоугольника.
Задача
65643
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Окружность с центром O проходит через концы гипотенузы прямоугольного треугольника и пересекает его катеты в точках M и K.
Докажите, что расстояние от точки O до прямой MK равно половине гипотенузы.
Задача
65644
(#4)
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть M и N – середины гипотенузы AB и катета BC прямоугольного треугольника ABC соответственно. Вневписанная окружность треугольника ACM касается стороны AM в точке Q, а прямой AC – в точке P. Докажите, что точки P, Q и N лежат на одной прямой.
Задача
65645
(#5)
|
|
Сложность: 4+ Классы: 8,9,10
|
Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и
ICXC пересекаются в одной точке.
Страница: 1
2 >> [Всего задач: 6]