Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой. Какое наименьшее число вершин может быть у такого многоугольника?

Вниз   Решение


Внутри окружности радиуса R расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не превосходит n2R2.

ВверхВниз   Решение


Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

ВверхВниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

ВверхВниз   Решение


В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  ∠ABC = 20°.  На равных сторонах CB и AB взяты соответственно точки P и Q так, что  ∠PAC = 50°  и  ∠QCA = 60°.
Докажите, что  ∠PQC = 30°.

ВверхВниз   Решение


Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.

ВверхВниз   Решение


Автор: Нилов Ф.

На отрезке AB построена дуга α (см. рис.). Окружность ω касается отрезка AB в точке T и пересекает α в точках C и D. Лучи AC и TD пересекаются в точке E, лучи BC и TC – в точке F. Докажите, что прямые EF и AB параллельны.

ВверхВниз   Решение


Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

ВверхВниз   Решение


Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

ВверхВниз   Решение


Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

ВверхВниз   Решение


Окружность ω вписана в треугольник ABC, в котором  AB < AC.  Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма  XY + XZ  не зависит от выбора точки X.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65746  (#9.6)

Темы:   [ Разрезания на параллелограммы ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 8,9,10

Квадрат разбит на  n² ≥ 4  прямоугольников  2(n – 1)  прямыми, из которых  n – 1  параллельны одной стороне квадрата, а остальные  n – 1  – другой. Докажите, что можно выбрать 2n прямоугольников разбиения таким образом, что для каждых двух выбранных прямоугольников один из них можно поместить в другой (возможно, предварительно повернув).

Прислать комментарий     Решение

Задача 65747  (#9.7)

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9,10

Окружность ω вписана в треугольник ABC, в котором  AB < AC.  Вневписанная окружность этого треугольника касается стороны BC в точке A'. Точка X выбирается на отрезке A'A так, что отрезок A'X не пересекает ω. Касательные, проведённые из X к ω, пересекают отрезок BC в точках Y и Z. Докажите, что сумма  XY + XZ  не зависит от выбора точки X.

Прислать комментарий     Решение

Задача 65748  (#9.8)

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Автор: Храбров А.

Сумма положительных чисел a, b, c и d равна 3. Докажите неравенство   1/a² + 1/b² + 1/c² + 1/d²1/a²b²c²d².

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .