ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?

Вниз   Решение


Алгоритм приближенного вычисления $ \sqrt[3]{a}$. Последовательность {an} определяется условиями:

a0 = a > 0,        an + 1 = $\displaystyle {\textstyle\frac{1}{3}}$$\displaystyle \left(\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right.$2an + $\displaystyle {\frac{a}{a_{n}^2}}$$\displaystyle \left.\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right)$        (n $\displaystyle \geqslant$ 0).

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = $ \sqrt[3]{a}$.

ВверхВниз   Решение


Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число Q – показатель его умственных способностей (чем больше Q, тем больше способности). За рейтинг страны принимается среднее арифметическое значений Q всех жителей этой страны.
  а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
  б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
  в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После этого направление миграционных потоков изменилось на противоположное – часть жителей В переехала в Б, а часть жителей Б – в А. Оказалось, что в результате рейтинги всех трёх стран опять выросли (по сравнению с теми, которые были после первого переезда, но до начала второго). (Так, во всяком случае, утверждают информационные агентства этих стран.) Может ли такое быть (если да, то как, если нет, то почему)?

(Предполагается, что за рассматриваемое время Q граждан не изменилось, никто не умер и не родился.)

ВверхВниз   Решение


Пять братьев. Один из пяти братьев испек маме пирог. Андрей сказал: «Это Витя или Толя». Витя сказал: «Это сделал не я и не Юра». Толя сказал: «Вы оба шутите». Дима сказал: «Нет, один из них сказал правду, а другой — нет». Юра сказал: «Нет, Дима, ты не прав». Мама знает, что трое из ее сыновей всегда говорят правду. Кто испек пирог?

ВверхВниз   Решение


Германн и Чекалинский разложили на столе 13 различных карт. Каждая карта может лежать в одном из двух положений: рубашкой вверх или рубашкой вниз. Игроки должны по очереди переворачивать по одной карте. Проигрывает тот игрок, после хода которого повторится какая-то из предыдущих ситуаций (включая изначальную). Первый ход сделал Чекалинский. Кто сможет выиграть независимо от того, как будет играть соперник?

ВверхВниз   Решение


По кругу написано семь натуральных чисел. Докажите, что найдутся два соседних числа, сумма которых чётна.

ВверхВниз   Решение


На заводе имени матроса Железняка изготавливают прямоугольники длиной 2 м и шириной 1 м. Длину отмеряет рабочий Иванов, а ширину, независимо от Иванова, отмеряет рабочий Петров. Средняя ошибка у обоих нулевая, но Иванов допускает стандартную ошибку измерения (стандартное отклонение длины) 3 мм, а Петров допускает стандартную ошибку 2 мм.
  а) Найдите математическое ожидание площади получившегося прямоугольника.
  б) Найдите стандартное отклонение площади получившегося прямоугольника в квадратных сантиметрах.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65771

Тема:   [ Дискретное распределение ]
Сложность: 4-
Классы: 8,9,10,11

На соревнования приехали 10 теннисисток, из них 4 из России. По правилам для проведения первого тура теннисистки разбиваются на пары случайным образом. Найдите вероятность того, что в первом туре все россиянки будут играть только с россиянками.

Прислать комментарий     Решение

Задача 65773

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

На заводе имени матроса Железняка изготавливают прямоугольники длиной 2 м и шириной 1 м. Длину отмеряет рабочий Иванов, а ширину, независимо от Иванова, отмеряет рабочий Петров. Средняя ошибка у обоих нулевая, но Иванов допускает стандартную ошибку измерения (стандартное отклонение длины) 3 мм, а Петров допускает стандартную ошибку 2 мм.
  а) Найдите математическое ожидание площади получившегося прямоугольника.
  б) Найдите стандартное отклонение площади получившегося прямоугольника в квадратных сантиметрах.

Прислать комментарий     Решение

Задача 65775

Темы:   [ Дискретное распределение ]
[ Сочетания и размещения ]
[ Многоугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

В выпуклом многоугольнике, в котором нечётное число вершин, равное  2n + 1,  выбирают независимо друг от друга две случайные диагонали.
Найдите вероятность того, что эти диагонали пересекаются внутри многоугольника.

Прислать комментарий     Решение

Задача 65777

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Линейные рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Высокий прямоугольник ширины 2 открыт сверху, и в него падают в случайной ориентации Г-тримино (см. рисунок).
  а) Упало k тримино. Найдите математическое ожидание высоты получившегося многоугольника.
  б) Упало 7 тримино. Найдите вероятность того, что сложенная из тримино фигура будет иметь высоту 12.

Прислать комментарий     Решение

Задача 65778

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Объем призмы ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4-
Классы: 10,11

Расследуя одно дело, следователь Башковицкий обнаружил, что ключевой свидетель – тот из семьи Петровых, кто в тот роковой день пришёл домой прежде прочих. Расследование выявило следующие факты.
  1. Соседка Марья Кузьминична хотела одолжить у Петровых соли, звонила им в дверь, но никто не открыл. Во сколько? Да кто ж знает? Темно уж было...
  2. Галина Ефимовна Петрова, придя вечером домой, обнаружила обоих детей на кухне, а мужа на диване – у него болела голова.
  3. Муж Анатолий Иванович заявил, что как пришёл, сразу лёг на диван и задремал, никого не видел, ничего не слышал, соседка точно не приходила – звонок бы его разбудил.
  4. Дочь Светлана сказала, что, вернувшись домой, сразу ушла к себе в комнату, про отца ничего не знает, но в прихожей, как всегда, споткнулась о Димкин ботинок.
  5. Дмитрий когда пришёл – не помнит, отца не видел, а как Светка ругалась из-за ботинка – слышал.
  "Ага, – задумался Башковицкий. – Какова же вероятность того, что Дмитрий вернулся домой раньше отца?"

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .