ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:

x1 = x . x = x2,    x2 = x1 . x1 = x4,    x3 = x2 . x2 = x8,    x4 = x3 . x3 = x16.

Пусть

n = 2e1 + 2e2 +...+ 2er        (e1 > e2 >...> er $\displaystyle \geqslant$ 0).

Придумайте алгоритм, который позволял бы вычислять xn при помощи

b(n) = e1 + $\displaystyle \nu$(n) - 1

умножений, где $ \nu$(n) = r — число единиц в двоичном представлении числа n.

Вниз   Решение


Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 65894

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичные дроби (прочее) ]
Сложность: 3
Классы: 6,7

Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным:  2016 + 2016 + 2016 + 2016 + 2016 = 46368.

Прислать комментарий     Решение

Задача 65899

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8

Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.

Прислать комментарий     Решение

Задача 65911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 10,11

На листе бумаги построили параболу – график функции  y = ax² + bx + c  при  a > 0,  b > 0  и  c < 0,  – а оси координат стёрли (см. рис.).
Как они могли располагаться?

Прислать комментарий     Решение

Задача 65912

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 10,11

Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S.

Прислать комментарий     Решение

Задача 65917

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 10,11

Имеет ли отрицательные корни уравнение   x4 – 4x³ – 6x² – 3x + 9 = 0?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .