|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:
x1 = x . x = x2, x2 = x1 . x1 = x4, x3 = x2 . x2 = x8, x4 = x3 . x3 = x16.
Пусть
n = 2e1 + 2e2 +...+ 2er (e1 > e2 >...> er Придумайте алгоритм, который позволял
бы вычислять xn при помощи
b(n) = e1 + умножений, где
Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным: 2016 + 2016 + 2016 + 2016 + 2016 = 46368.
Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.
На листе бумаги построили параболу – график функции y = ax² + bx + c при a > 0, b > 0 и c < 0, – а оси координат стёрли (см. рис.).
Сумма двух целых чисел равна S. Маша умножила левое число на целое число a, правое – на целое число b, сложила эти произведения и обнаружила, что полученная сумма делится на S. Алёша, наоборот, левое число умножил на b, а правое – на a. Докажите, что и у него аналогичная сумма разделится на S.
Имеет ли отрицательные корни уравнение x4 – 4x³ – 6x² – 3x + 9 = 0?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|