ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 65918

Темы:   [ Числовые таблицы и их свойства ]
[ Признаки делимости на 3 и 9 ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 10,11

Вася вписал в клетки таблицы 4×18 натуральные числа от 1 до 72 в некотором одному ему известном порядке. Сначала он нашел произведение чисел, стоящих в каждом столбце, а затем у каждого из 18 полученных произведений вычислил сумму цифр. Могли ли все получившиеся суммы оказаться одинаковыми?

Прислать комментарий     Решение

Задача 65919

Темы:   [ Правильные многоугольники ]
[ Теорема косинусов ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 10,11

Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность.
Что больше: сумма квадратов длин всех сторон пятиугольника или сумма квадратов длин всех сторон двадцатиугольника?

Прислать комментарий     Решение

Задача 65921

Темы:   [ Периодичность и непериодичность ]
[ Композиции симметрий ]
Сложность: 3+
Классы: 10,11

Функция  f(x) определена для всех действительных чисел, причем для любого x выполняются равенства  f(x + 2) = f(2 – x)  и  f(x + 7) = f(7 – x).
Докажите, что  f(x) – периодическая функция.

Прислать комментарий     Решение

Задача 65893

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 5,6

Иван Царевич хочет выйти из круглой комнаты с шестью дверями, пять из которых заперты на ключ. За одну попытку он может проверить любые три двери, расположенные подряд, и если одна из них не заперта, то он в неё выйдет. После каждой попытки Баба-Яга запирает дверь, которая была открыта, и отпирает одну из соседних дверей. Какую именно, Иван Царевич не знает. Как ему действовать, чтобы наверняка выйти из комнаты?

Прислать комментарий     Решение

Задача 65903

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 7,8

В прямоугольнике ABCD на диагонали AC отмечена точка K так, что  CK = BC.  На стороне ВС отмечена точка М так, что  КМ = СМ.
Докажите, что  АK + ВМ = СМ.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .