Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Саша выбрал натуральное число  N > 1  и выписал в строчку в порядке возрастания все его натуральные делители:  d1 < ... < ds  (так что  d1 = 1  и
ds = N).  Затем для каждой пары стоящих рядом чисел он вычислил их наибольший общий делитель; сумма полученных  s – 1  чисел оказалась равной
N – 2.  Какие значения могло принимать N?

Вниз   Решение


Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ  Y.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66252  (#8.1)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC высота AH делит медиану BM пополам.
Докажите, что из медиан треугольника ABM можно составить прямоугольный треугольник.

Прислать комментарий     Решение

Задача 66253  (#8.2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
Сложность: 4-
Классы: 8,9

Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что  DMAC.

Прислать комментарий     Решение

Задача 66254  (#8.3)

Темы:   [ Трапеции (прочее) ]
[ ГМТ - прямая или отрезок ]
[ Две пары подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ  Y.

Прислать комментарий     Решение

Задача 66255  (#8.4)

Темы:   [ Правильные многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9

Автор: Белухов Н.

Можно ли разрезать правильный десятиугольник по нескольким диагоналям и сложить из получившихся кусков два правильных многоугольника?

Прислать комментарий     Решение

Задача 66256  (#8.5)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 7,8,9

На прозрачном листе бумаги отмечены три точки.
Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .