ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
года:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра. Радиус окружности равен 25; две параллельные хорды равны 14 и 40. Найдите расстояние между ними. Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы. Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его
первая и четвёртая цифры – не нули.
Сторона основания правильной треугольной пирамиды равна a , а
расстояние между противоположными рёбрами равно На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что AM = CP, BN = DQ, BM = DP, NC = QA. Докажите, что ABCD и MNPQ – параллелограммы. а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета. 30 команд участвуют в розыгрыше первенства по футболу. Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию? Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении 1 : 3. На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём MN || AB и MN = AM.
Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Сторона основания правильной четырёхугольной пирамиды равна a ,
а расстояние между диагональю основания и скрещивающимся с ней
боковым ребром равно
Сторона основания правильной треугольной пирамиды равна a , а
расстояние между противоположными рёбрами равно Найдите натуральное число, большее единицы, которое встречается в треугольнике Паскаля Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте. а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние). б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось) |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]
Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал: — Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение. Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса! Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?
Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.
Цифры от 0 до 9 зашифрованы буквами A, B, C, D, E, F, G, H, I, J в каком-то порядке. За один вопрос можно узнать зашифрованную запись суммы нескольких различных букв. Например, если спросить «А + B = ?», то в случае, когда A = 9, B = 1, C = 0, ответом будет «А + В = BC». Как можно за пять таких вопросов определить, какие буквы каким цифрам соответствуют?
Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте. а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние). б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)
Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке