Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.

Вниз   Решение


Радиус окружности равен 25; две параллельные хорды равны 14 и 40. Найдите расстояние между ними.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус описанной сферы.

ВверхВниз   Решение


Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки M, N, P и Q так, что  AM = CP,  BN = DQ,  BM = DP,  NC = QA.  Докажите, что ABCD и MNPQ – параллелограммы.

ВверхВниз   Решение


а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь проводов разного цвета?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

ВверхВниз   Решение


Перпендикуляр, опущенный из вершины прямоугольника на диагональ, делит прямой угол на две части в отношении  1 : 3.
Найдите угол между этим перпендикуляром и другой диагональю.

ВверхВниз   Решение


На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём  MN || AB  и  MN = AM.
Найдите угол BAN, если  ∠B = 45°  и  ∠C = 60°.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , а расстояние между диагональю основания и скрещивающимся с ней боковым ребром равно . Найдите радиус описанной сферы.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a , а расстояние между противоположными рёбрами равно . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Найдите натуральное число, большее единицы, которое встречается в треугольнике Паскаля
  а) больше трёх раз.
  б) больше четырёх раз.

ВверхВниз   Решение


Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

Вверх   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]      



Задача 66547

 [Учуй кекс]
Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7

Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал:

— Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение.

Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса!

Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?
Прислать комментарий     Решение


Задача 66548

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 6,7

Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

Прислать комментарий     Решение


Задача 66987

Тема:   [ Криптография ]
Сложность: 3
Классы: 6,7,8

Цифры от 0 до 9 зашифрованы буквами A, B, C, D, E, F, G, H, I, J в каком-то порядке. За один вопрос можно узнать зашифрованную запись суммы нескольких различных букв. Например, если спросить «А + B = ?», то в случае, когда A = 9, B = 1, C = 0, ответом будет «А + В = BC». Как можно за пять таких вопросов определить, какие буквы каким цифрам соответствуют?
Прислать комментарий     Решение


Задача 66988

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 6,7,8

Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте.

а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние).

б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)

Прислать комментарий     Решение

Задача 67172

Темы:   [ Десятичная запись числа ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .