ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

При установке кодового замка каждой из 26 латинских букв, расположенных на его клавиатуре, сопоставляется произвольное натуральное число, известное лишь обладателю замка. Разным буквам сопоставляются не обязательно разные числа. После набора произвольной комбинации попарно различных букв происходит суммирование числовых значений, соответствующих набранным буквам. Замок открывается, если сумма делится на 26. Докажите, что для любых числовых значений букв существует комбинация, открывающая замок.

Вниз   Решение


В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67087

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9,10,11

Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника.
Прислать комментарий     Решение


Задача 67088

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$.
Прислать комментарий     Решение


Задача 67089

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67090

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства касательной ]
[ Угол между касательной и хордой ]
Сложность: 3
Классы: 8,9,10

Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.
Прислать комментарий     Решение


Задача 67091

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Ивлев Ф.

Вписанная и вневписанная окружности треугольника $ABC$ касаются отрезка $AC$ в точках $P$ и $Q$ соответственно. Прямые $BP$ и $BQ$ вторично пересекают описанную окружность треугольника $ABC$ в точках $P'$ и $Q'$ соответственно. Докажите, что $PP' > QQ'$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .