Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный?

Вниз   Решение


Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

ВверхВниз   Решение


Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству  ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

ВверхВниз   Решение


В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.
Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).

ВверхВниз   Решение


Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.

ВверхВниз   Решение


На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.

ВверхВниз   Решение


Даны две концентрические окружности Ω и ω. Хорда AD окружности Ω касается ω. Внутри меньшего сегмента AD круга с границей Ω взята произвольная точка P. Касательные из P к окружности ω пересекают большую дугу AD окружности Ω в точках B и C. Отрезки BD и AC пересекаются в точке Q. Докажите, что отрезок PQ делит отрезок AD на две равные части.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



Задача 67161

Темы:   [ Концентрические окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Даны две концентрические окружности Ω и ω. Хорда AD окружности Ω касается ω. Внутри меньшего сегмента AD круга с границей Ω взята произвольная точка P. Касательные из P к окружности ω пересекают большую дугу AD окружности Ω в точках B и C. Отрезки BD и AC пересекаются в точке Q. Докажите, что отрезок PQ делит отрезок AD на две равные части.
Прислать комментарий     Решение


Задача 67155

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
Прислать комментарий     Решение


Задача 67156

Темы:   [ Центральная симметрия (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 8,9,10,11

На сторонах правильного девятиугольника ABCDEFGHI во внешнюю сторону построили треугольники XAB, YBC, ZCD и TDE. Известно, что углы X, Y, Z, T этих треугольников равны 20 каждый, а среди углов XAB, YBC, ZCD и TDE каждый следующий на 20 больше предыдущего. Докажите, что точки X, Y, Z, T лежат на одной окружности.

Прислать комментарий     Решение


Задача 67157

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Петя прибавил к натуральному числу N натуральное число M и заметил, что сумма цифр у результата та же, что и у N. Тогда он снова прибавил M к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у N?
Прислать комментарий     Решение


Задача 67163

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 5
Классы: 8,9,10,11

В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .