Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдите периметр треугольника, один из углов которого равен α , а радиусы вписанной и описанной окружностей равны r и R .

Вниз   Решение


Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.

ВверхВниз   Решение


За один ход разрешается или удваивать число, или стирать его последнюю цифру. Можно ли за несколько ходов получить из числа 458 число 14?

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Автор: Русских И.

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]      



Задача 67285

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 7,8

Автор: Русских И.

Коля пришёл в музей современного искусства и увидел квадратную картину в раме необычной формы, состоящей из 21 равного треугольника. Коля заинтересовался, чему равны углы этих треугольников. Помогите ему их найти.

Прислать комментарий     Решение

Задача 103735

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.

Прислать комментарий     Решение


Задача 60466

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 64570

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

Прислать комментарий     Решение

Задача 64571

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Автор: Шноль Д.Э.

Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и 14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
  а) Сколько жёлтых одуванчиков было на поляне позавчера?
  б) Сколько белых одуванчиков будет на поляне завтра?

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .