Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Пусть     Чему равны Pn и Qn?

Вниз   Решение


Автор: Якубов А.

Прямая, проходящая через центр I вписанной окружности треугольника ABC, перпендикулярна AI и пересекает стороны AB и AC в точках C' и B' соответственно. В треугольниках BC'I и CB'I провели высоты C'C1 и B'B1 соответственно. Докажите, что середина отрезка B1C1 лежит на прямой, проходящей через точку I и перпендикулярной BC.

ВверхВниз   Решение


Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

ВверхВниз   Решение


В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.

ВверхВниз   Решение


Пусть l1, l2, ..., ln несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке X1, X2, ..., Xn так, чтобы перпендикуляр, восставленный к прямой lk в точке Xk (для любого натурального k < n), проходил через точку Xk + 1, а перпендикуляр, восставленный к прямой ln в точке Xn, проходил через точку X1.

Попробуйте сформулировать и доказать аналогичную теорему в пространстве.

ВверхВниз   Решение


Автор: Зимин А.

Дан неравнобедренный треугольник $ABC$. Вписанная окружность касается его сторон $AB$, $AC$ и $BC$ в точках $D$, $E$, $F$ соответственно. Вневписанная окружность касается стороны $BC$ в точке $N$. Пусть $T$ – ближайшая к $N$ точка пересечения прямой $AN$ с вписанной окружностью, а $K$ – точка пересечения прямых $DE$ и $FT$. Докажите, что $AK||BC$.

ВверхВниз   Решение


Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.

ВверхВниз   Решение


В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?

ВверхВниз   Решение


а) Дно прямоугольной коробки было выложено плитками размерами 2×2 и 1×4. Плитки высыпали из коробки и при этом потеряли одну плитку 2×2. Вместо неё удалось достать плитку 1×4. Докажите, что теперь выложить дно коробки плитками не удастся.
б) Останется ли верным утверждение задачи, если вместо плиток 1×4 и 2×2 рассматривать плитки из трёх квадратиков: прямоугольные 1×3 и "уголки").

ВверхВниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты. Одна из монет фальшивая, причём неизвестно, легче она настоящих монет или тяжелее (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету? Решите ту же задачу в случаях, когда имеется 4 монеты и 9 монет.

ВверхВниз   Решение


Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 73624

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 7,8,9

Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .