ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С натуральным числом (записываемым в десятичной системе) разрешено проделывать следующие операции: А) приписать на конце Б) приписать на конце В) разделить на 2 (если число чётно). Например, если с числом 4 проделаем последовательно операции В, В, А а) Из числа 4 получите б)* Докажите, что из числа 4 можно получить любое натуральное число. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
m и n – натуральные числа, m < n. Докажите, что
Из вершины B параллелограмма ABCD проведены его высоты BK и BH. Известны отрезки KH = a и BD = b. Найдите расстояние от точки B до точки пересечения высот треугольника BKH.
А) приписать на конце Б) приписать на конце В) разделить на 2 (если число чётно). Например, если с числом 4 проделаем последовательно операции В, В, А а) Из числа 4 получите б)* Докажите, что из числа 4 можно получить любое натуральное число.
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
Найдите наименьшее натуральное число n, для которого выполнено следующее условие: если число p – простое и n делится на p – 1, то n делится на p.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|