ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи По заданному ненулевому x значение x8 можно найти за три арифметических действия: а) x16 можно найти за б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий. Решение |
Страница: 1 [Всего задач: 4]
а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга?
Для любого натурального числа n сумма делится
На плоскости даны две точки A и B. Пусть C – некоторая точка плоскости, равноудалённая от точек A и B. Построим последовательность точек
а) x16 можно найти за б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|