Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC.

Вниз   Решение


Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

ВверхВниз   Решение


На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



ВверхВниз   Решение


При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

ВверхВниз   Решение


На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

ВверхВниз   Решение


Разложите  P(x + 3)  по степеням x, где  P(x) = x4x3 + 1.

ВверхВниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 76490

Темы:   [ Равносоставленные фигуры ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 7,8,9

Дан треугольник ABC. Требуется разрезать его на наименьшее число частей так, чтобы, перевернув эти части на другую сторону, из них можно было сложить тот же треугольник ABC.

Прислать комментарий     Решение

Задача 76486

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 10,11

Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.
Прислать комментарий     Решение


Задача 76492

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 8,9

Найти целое число a, при котором  (xa)(x – 10) + 1  разлагается в произведение  (x + b)(x + c)  двух множителей с целыми b и c.

Прислать комментарий     Решение

Задача 76494

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Построить треугольник ABC по трем точкам H1, H2 и H3, которые являются симметричными отражениями точки пересечения высот искомого треугольника относительно его сторон.
Прислать комментарий     Решение


Задача 76499

Тема:   [ Скрещивающиеся прямые и ГМТ ]
Сложность: 4+
Классы: 10,11

В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .