ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1. Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов? Существует ли такое натуральное x, что x² + x + 1 делится на 1985? Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно. Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат? В каком из выражений: (1 – x² + x³)1000, (1 + x² – x³)1000 после раскрытия скобок и приведения подобных членов больший коэффициент при x20? |
Страница: 1 [Всего задач: 5]
В каком из выражений: (1 – x² + x³)1000, (1 + x² – x³)1000 после раскрытия скобок и приведения подобных членов больший коэффициент при x20?
Вычислить с пятью десятичными знаками (то есть с точностью до
0,00001) произведение:
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, ..., n + 9 есть хотя бы одно, взаимно простое с остальными девятью.
Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке