Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1.

Вниз   Решение


Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

ВверхВниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

ВверхВниз   Решение


Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

ВверхВниз   Решение


Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?

ВверхВниз   Решение


В каком из выражений:  (1 – x² + x³)1000,   (1 + x² – x³)1000  после раскрытия скобок и приведения подобных членов больший коэффициент при x20?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 76541  (#1)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

В каком из выражений:  (1 – x² + x³)1000,   (1 + x² – x³)1000  после раскрытия скобок и приведения подобных членов больший коэффициент при x20?
Прислать комментарий     Решение


Задача 76542  (#2)

Темы:   [ Приближения чисел ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 10,11

Вычислить с пятью десятичными знаками (то есть с точностью до 0,00001) произведение:  

Прислать комментарий     Решение

Задача 76543  (#3)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  ...,  n + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Прислать комментарий     Решение

Задача 76539  (#4)

Темы:   [ Разрезания (прочее) ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Прислать комментарий     Решение


Задача 76544  (#5)

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
Сложность: 3+
Классы: 10,11

Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .