Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В правильной треугольной пирамиде расположены два шара так, что первый касается основания пирамиды и её боковых рёбер, а второй шар касается первого шара внешним образом и боковых граней пирамиды. Радиус первого шара равен R . Найдите радиус второго шара, если объём пирамиды при этих условиях является минимально возможным.

Вниз   Решение


Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

ВверхВниз   Решение


Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.

ВверхВниз   Решение


Вершина угла величиной 70° служит началом луча, образующего с его сторонами углы 30° и 40°. Из некоторой точки M на этот луч и на стороны угла опущены перпендикуляры, основания которых – A, B и C. Найдите углы треугольника ABC.

ВверхВниз   Решение


Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

ВверхВниз   Решение


На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

ВверхВниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

ВверхВниз   Решение


В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



Задача 78223

Темы:   [ Невыпуклые многоугольники ]
[ Принцип Дирихле (углы и длины) ]
[ Композиции поворотов ]
Сложность: 4+
Классы: 8,9,10

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
Прислать комментарий     Решение


Задача 78233

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 5-
Классы: 8,9,10

В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Задача 78230

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 5
Классы: 10,11

Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .