Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]
|
|
Сложность: 2+ Классы: 9,10
|
Для зашифровки телеграфных сообщений требуется разбить всевозможные
десятизначные "слова" – наборы из десяти точек и тире – на две группы
так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует.
В треугольнике
ABC проведены высоты
AE,
BM и
CP. Известно, что
EM
параллельна
AB и
EP параллельна
AC. Докажите, что
MP параллельна
BC.
|
|
Сложность: 3 Классы: 8,9,10
|
Дан треугольник
ABC. Найдите на прямой
AB точку
M, для которой
сумма радиусов описанных окружностей треугольников
ACM и
BCM
была бы наименьшей.
|
|
Сложность: 3 Классы: 10,11
|
Имеется лабиринт, состоящий из
n окружностей, касающихся прямой
AB в точке
M. Все окружности расположены по одну сторону от прямой, а их длины
составляют геометрическую прогрессию со знаменателем 2. Два человека в разное
время начали ходить по этому лабиринту. Их скорости одинаковы, а направления
движения различны. Каждый из них проходит все окружности по порядку, и, пройдя
наибольшую, снова идет в меньшую. Доказать, что они встретятся.
|
|
Сложность: 3 Классы: 10,11
|
Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом:
выбрать внутри квадрата две точки и соединить каждую из них прямолинейными
разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки
нужно выбрать?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 31]