ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте образ точки A при инверсии относительно
окружности S с центром O.
Дан угол ABC и прямая l. Постройте прямую,
параллельную прямой l, на которой стороны угла ABC
высекают отрезок данной длины a.
Пусть a < b. Докажите, что
a + ha Вокруг эллипса описан прямоугольник. Докажите,
что длина его диагонали не зависит от положения прямоугольника.
Каждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
На плоскости расположено n Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4. В сегмент вписываются всевозможные пары пересекающихся окружностей,
и для каждой пары через точки их пересечения проводится прямая.
Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
Впишите в данную окружность n-угольник, одна
из сторон которого проходит через данную точку, а остальные
стороны параллельны данным прямым.
Докажите, что
3 Продолжения сторон AB и CD прямоугольника ABCD
пересекают некоторую прямую в точках M и N, а продолжения
сторон AD и BC пересекают ту же прямую в точках P и Q.
Постройте прямоугольник ABCD, если даны точки M, N, P, Q и длина a
стороны AB.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]
В каждой клетке доски 5×5 клеток сидит жук.
В некоторый момент все жуки переползают на соседние (по
горизонтали или вертикали) клетки. Обязательно ли при
этом останется пустая клетка?
а) Можно ли замостить костями домино размером 1×2
шахматную доску размером 8×8, из которой вырезаны
два противоположных угловых поля?
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.
Детали полотна игрушечной железной дороги имеют
форму четверти окружности радиуса R. Докажите, что
последовательно присоединяя их концами
так, чтобы они плавно переходили друг
в друга, нельзя составить путь, у которого
начало совпадает с концом, а первое и последнее звенья образуют
тупик, изображенный на рис.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке