Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Окружности радиуса x и y касаются окружности радиуса R, причем расстояние между точками касания равно a. Вычислите длину следующей общей касательной к первым двум окружностям:
а) внешней, если оба касания внешние или внутренние одновременно;
б) внутренней, если одно касание внутреннее, а другое внешнее.

Вниз   Решение


Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

ВверхВниз   Решение


Дан параллелограмм ABCD. Окружность, проходящая через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R соответственно. Докажите, что  AP . AB = AR . AD = AQ . AC.

ВверхВниз   Решение


Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что  BM = CM.

ВверхВниз   Решение


Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 79291

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

Доказать, что в десятичной записи чисел  2n + 1974n и 1974n  содержится одинаковое количество цифр.

Прислать комментарий     Решение

Задача 79293

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Степень вершины ]
Сложность: 3+
Классы: 7,8,9

На конгресс собрались учёные, среди которых есть друзья. Оказалось, что каждые два из них, имеющие на конгрессе равное число друзей, не имеют общих друзей. Доказать, что найдётся учёный, который имеет ровно одного друга из числа участников конгресса.

Прислать комментарий     Решение

Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 79269

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Прислать комментарий     Решение


Задача 79289

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .