Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?

Вниз   Решение


Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.

ВверхВниз   Решение


Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

ВверхВниз   Решение


Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. Al, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC. Доказать, что l - биссектриса угла DAB.

ВверхВниз   Решение


В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

ВверхВниз   Решение


На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:

  • каждая отмеченная точка лежала хотя бы на одной из этих прямых,
  • на каждой прямой лежало хотя бы две отмеченные точки,
  • все три проведённые прямые пересекались бы в одной точке (не обязательно отмеченной).

ВверхВниз   Решение


a и b – натуральные числа. Покажите, что если  4ab – 1  делит  (4a² – 1)²,  то  a = b.

ВверхВниз   Решение


Составьте уравнение прямой, проходящей через точку пересечения прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.

ВверхВниз   Решение


В четырёхугольнике ABCD диагонали AC и BD перпендикулярны и пересекаются в точке P . Длина отрезка, соединяющего вершину C с точкой M , являющейся серединой отрезка AD , равна . Расстояние от точки P до отрезка BC равно и AP = 1 . Найдите AD , если известно, что вокруг четырёхугольника ABCD можно описать окружность.

ВверхВниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 58093  (#21.014)

Тема:   [ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n попарно непараллельных прямых. Докажите, что угол между некоторыми двумя из них не больше 180o/n.
Прислать комментарий     Решение


Задача 58094  (#21.015)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Центральная симметрия помогает решить задачу ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 4+
Классы: 8,9,10

В окружности радиуса 1 проведено несколько хорд. Докажите, что если каждый диаметр пересекает не более k хорд, то сумма длин хорд меньше $ \pi$k.
Прислать комментарий     Решение


Задача 79361  (#21.016)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

Прислать комментарий     Решение

Задача 58096  (#21.017)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10

Внутри окружности радиуса n расположено 4n отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой l и пересекающую по крайней мере два данных отрезка.
Прислать комментарий     Решение


Задача 58097  (#21.018)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10,11

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .