ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше? Трапеция ABCD и параллелограмм MBDK расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей. Даны числа а1, ..., аn. d = MAX { di | 1 ≤ i ≤ n } а) Доказать, что для любых x1 ≤ x2 ≤ ... ≤ xn выполняется неравенство б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n Рассмотрим 5 точек A, B, C, D, E так что ABCD - параллелограмм, BCED лежат на одной окружности. A ∈ l, прямая lпересекает внутренность [DC] в F и прямую BC в G. Пусть EF = EG = EC.
Доказать, что l - биссектриса угла DAB. В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M. На клетчатой бумаге отмечены 6 точек (см. рисунок). Проведите три прямые так, чтобы одновременно выполнялись три условия:
a и b – натуральные числа. Покажите, что если 4ab – 1 делит (4a² – 1)², то a = b.
Составьте уравнение прямой, проходящей через точку пересечения прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.
В четырёхугольнике ABCD диагонали AC и BD перпендикулярны и
пересекаются в точке P . Длина отрезка, соединяющего вершину C с
точкой M , являющейся серединой отрезка AD , равна На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов? |
Страница: 1 2 >> [Всего задач: 8]
На плоскости дано n попарно непараллельных
прямых. Докажите, что угол между некоторыми двумя из
них не больше
180o/n.
В окружности радиуса 1 проведено несколько хорд.
Докажите, что если каждый диаметр пересекает не более k
хорд, то сумма длин хорд меньше
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
Внутри окружности радиуса n расположено 4n отрезков длиной 1.
Докажите, что можно провести прямую, параллельную или перпендикулярную
данной прямой l и пересекающую по крайней мере два данных отрезка.
Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке