ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79435  (#1)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10

Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

Прислать комментарий     Решение

Задача 79436  (#2)

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3+
Классы: 10

Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка этой касательной, заключённой внутри окружности радиуса 5.
Прислать комментарий     Решение


Задача 79437  (#3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

Доказать, что  11983 + 21983 + ... + 19831983  делится на  1 + ... + 1983.

Прислать комментарий     Решение

Задача 79438  (#4)

Темы:   [ Сочетания и размещения ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 8,9,10

Двадцать городов соединены 172 авиалиниями.
Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .