ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что если в выпуклом шестиугольнике
каждая из трех диагоналей, соединяющих противоположные
вершины, делит площадь пополам, то эти диагонали пересекаются в одной
точке.
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия? Доказать, что при любом целом положительном n сумма
Сколько клеток пересекает диагональ в клетчатом прямоугольнике размерами 199 × 991?
Найдите остаток от деления 2100 на 101. В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны. Докажите, что на координатной плоскости можно провести окружность, внутри которой лежит ровно n целочисленных точек. Докажите, что все числа ряда
Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика. План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний? Докажите, что а) Докажите, что если
a + ha = b + hb = c + hc, то
треугольник ABC правильный.
Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM. На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку. Расшифруйте ребус |
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 644]
Доказать, что число 29 + 299 делится на 100.
Доказать, что для любого натурального n число 62(n+1) − 2n+3·3n + 2 + 36 делится на 900.
Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.
Расшифруйте ребус
Фома и Ерёма нашли на дороге по пачке 11-рублевок. В чайной Фома выпил 3 стакана чая, съел 4 калача и 5 бубликов. Ерёма выпил 9 стаканов чая, съел 1 калач и 4 бублика. Стакан чая, калач и бублик стоят по целому числу рублей. Оказалось, что Фома может расплатиться 11-рублевками без сдачи. Покажите, что это может сделать и Ерёма.
Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке