Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дана пирамида ABCD . Сфера касается плоскостей ABC , ACD и ADB в точках K , L и M соответственно. При этом точка K находится на стороне BC , точка L – на стороне CD , точка M – на стороне DB . Известно, что радиус сферы равен , BAC = 90o , CAD = 75o , DAB = 75o . Найдите объём пирамиды.

Вниз   Решение


Хулиганы Вася и Петя порвали стенгазету, причём Петя рвал каждый кусок на 5 частей, а Вася на 9. При попытке собрать стенгазету нашли 1988 обрывков. Докажите, что нашли не все кусочки.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.

ВверхВниз   Решение


Кащей Бессмертный загадывает три двузначных числа: a, b, c. Иван Царевич должен назвать ему три числа: X, Y, Z, после чего Кащей сообщает ему сумму aX + bY + cZ. Царевич должен отгадать задуманные числа, иначе ему отрубят голову. Какие числа он должен загадать, чтобы остаться в живых?

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

ВверхВниз   Решение


В правильной четырёхугольной пирамиде SABCD боковое ребро равно a и равно диагонали основания ABCD . Через точку A параллельно прямой BD проведена плоскость P , образующая с прямой AD угол, равный arcsin . Найдите площадь сечения пирамиды плоскостью P и радиус шара, касающегося плоскости P и четырёх прямых, которым принадлежат боковые рёбра пирамиды.

ВверхВниз   Решение


Круг разделен на 6 секторов, в котором по часовой стрелке стоят числа 1,0,1,0,0,0. Можно прибавлять по единице к любым числам, стоящим в двух соседних секторах. Можно ли сделать все числа равными?

ВверхВниз   Решение


На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
  а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
  б) Можете ли вы определить, какой это будет плод?
  в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 391]      



Задача 79638

Темы:   [ Построения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 6,7

На клетчатой бумаге нарисован прямоугольник 2 × 3. Отметьте вершины квадрата, стороны которого равны диагонали этого прямоугольника (не используя чертежных инструментов).
Прислать комментарий     Решение


Задача 86501

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
[ Перебор случаев ]
Сложность: 3-
Классы: 8,9

Найдите все натуральные m и n, для которых  m! + 12 = n².

Прислать комментарий     Решение

Задача 86555

Темы:   [ Замощения костями домино и плитками ]
[ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
Прислать комментарий     Решение


Задача 86556

Темы:   [ Теория игр (прочее) ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
Прислать комментарий     Решение


Задача 88037

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 6,7,8

На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
  а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
  б) Можете ли вы определить, какой это будет плод?
  в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .