Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Рассматриваются все треугольники АВС, у которых положение вершин В и С зафиксировано, а вершина А перемещается в плоскости треугольника так, что медиана СМ имеет одну и ту же длину. По какой траектории движется точка А?

Вниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

ВверхВниз   Решение


Докажите, что при всех x, 0<x<π/3, справедливо неравенство sin2x+cosx>1.

ВверхВниз   Решение


На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

ВверхВниз   Решение


Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

ВверхВниз   Решение


Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  P² + Q² = R².  Докажите, что все корни одного из многочленов третьей степени – действительные.

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

ВверхВниз   Решение


В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

ВверхВниз   Решение


Автор: Фольклор

Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?

ВверхВниз   Решение


Какое минимальное количество клеток можно закрасить черным в белом квадрате 300×300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.

ВверхВниз   Решение


Сказка о мертвой царевне и семи богатырях. Как-то раз, возвратившись вечером домой, богатыри отдали царевне добычу — 29 серых уток. Каждый брат застрелил хотя бы одну утку. Все добыли по разному числу уток: чем брат был старше, тем больше дичи он застрелил. Какова добыча старшего брата?

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 391]      



Задача 89942

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Сказка о мертвой царевне и семи богатырях. Как-то раз, возвратившись вечером домой, богатыри отдали царевне добычу — 29 серых уток. Каждый брат застрелил хотя бы одну утку. Все добыли по разному числу уток: чем брат был старше, тем больше дичи он застрелил. Какова добыча старшего брата?
Прислать комментарий     Решение


Задача 97829

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9

Автор: Фомин С.В.

175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
  а)  80 коп.;
  б)  одного рубля.

Прислать комментарий     Решение

Задача 98631

 [Лягушки]
Темы:   [ Задачи на движение ]
[ Процессы и операции ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 6,7

Две лягушки Ква и Кви участвуют в "забеге" – 20 метров вперед по прямой и обратно. Ква преодолевает за один прыжок 6 дм, а Кви только 4, но зато Кви делает три прыжка в то время, как ее соперница делает два. Скажите, каков при этих обстоятельствах возможный исход состязания?

Прислать комментарий     Решение

Задача 98635

Темы:   [ Задачи на проценты и отношения ]
[ Обратный ход ]
Сложность: 3-
Классы: 5,6,7

Сколько фунтов зерна нужно смолоть, чтобы после оплаты работы – 10% от помола, осталось ровно 100 фунтов муки?
Потерь при помоле нет.

Прислать комментарий     Решение

Задача 98646

 [Сейчас вылетит птичка]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7

В фотоателье залетели 20 птиц – 8 скворцов, 7 трясогузок и 5 дятлов. Каждый раз, как только фотограф щелкнет затвором фотоаппарата, какая-то одна из птичек улетит (насовсем). Сколько кадров сможет сделать фотограф, чтобы быть уверенным: у него останется не меньше четырёх птиц одного вида, и не меньше трёх – другого?

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .